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The enhancement factors for the solute diffusion in dilute b.c.c, alloys are discussed on the 
lines of two approaches. One of them is based on the Taylor's expansion series of activation 
energy and pre-exponential factor on concentration. The convergency of these series is 
studied. The second approach is formulated in the framework of the statistical theory. The 
comparative analyses of these two ways for the explanation of the enhancement of diffusion 
is carried out. The concentration dependencies of jump frequencies are investigated for V-Zr 
dilute solid solution as an example. It is shown that these dependencies are connected with 
the changes of the migration energy Era(c) as well as with the changes of the frequencies of 
vibrations. Different mechanisms that are possible for the explanation of the enhancement 
of D(c) are discussed. 

1. I n t r o d u c t i o n  
The investigation of diffusion in dilute b.c.c, alloys is of 
great importance because of several circumstances. 
There is a group of b.c.c, metals that show the devi- 
ation of the temperature dependence of self-diffusion 
from the Arrhenius law. These are so-called "anomal- 
ous" b.c.c, metals. The statistical theory, taking into 
consideration different types of atom jumps for solute 
diffusion in b.c.c, alloys is not formulated so far. It has 
to be more complicated because the difference in the 
distances between the first and the second nearest 
neighbours in the b.c.c, lattice is about 15% while in 
f.c.c, lattice it is about 40%. This means that more 
types of jumps have to be involved. 

The purpose of this paper is to study the solute 
diffusion in dilute substitutional b.c.c, alloys. For  
many binary substitutional alloys it is well known that 
the diffusion occurs via vacancies. Therefore the diffu- 
sion coefficient is influenced by the vacancies concen- 
tration. When changing the concentration of an alloy 
is done it results in the changing of the activation 
energies for vacancies as well as in the deviations of 
the pre-exponential factor for the diffusion process. 
Thus the diffusion highly depends on the concentra- 
tion of an alloy. It is also a well-established experi- 
mental fact that alloying of a pure metal by an 
additional element produces changes in diffusion coef- 
ficient of solvent and of solute atoms [1]. For a suc- 
cessful description of this dependence several empiri- 
cal approximations are widely used. In One of these 
approximations the exponential dependence of diffu- 
sion coefficient on the concentration, c, of the solute in 
a solid solution is used 

D2(c) = Dz(O)exp(Bc) (1) 

Here D2 (c) is the diffusion coefficient of solute in dilute 
alloy, D2(0) is the diffusion coefficient of solute in the 
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pure solvent, B is a temperature dependent constant 
[2]. Another approximation is represented by 

D2(c ) = D2(0)(1 + B l c  + B2 c2 + . . . )  (2) 

with temperature dependent parameters B1, Bz, ... �9 
Both of these equations are representing some empiri- 
cal regularity that gives an opportunity to describe the 
concentration dependence of D2(c). Equation 2 seems 
to be more natural because it may be assumed that it is 
given in the form of Taylor's series on the small para- 
meter that is concentration of the solute 

ODz(c) 
O2(c)  --- D2(0) Jr ~c c=o c 

1 ~202(c) c2 
+ 2 Oc 2 c=o + "'" 

At the same time, Equation 1 includes less empirical 
parameters and sometimes may be reduced to Equa- 
tion 2 by expansion in Taylor's series, thus giving 
a simple possibility to evaluate the constants 
B1,B2 . . . .  in the following form 

BI = B, 

1 
B2 = ~ B~ . . . .  (3) 

Such an approach was discussed recently for the diffu- 
sion of solvent atoms in dilute f.c.c, solid solutions [3]. 
It is obvious that using Equation 2 gives more accu- 
rate results in the fitting procedure, and the precision 
in this case is higher, because fitting is done with larger 
number of adjustable parameters. In any case the 
physical meaning of these parameters is not elimi- 
nated enough, although some attempts were done in 
the case of self-diffusion in dilute solid solutions (see, 
for example, [4, 5]). 
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In order to eliminate the concentration dependence 
of diffusion coefficient one can start with the Ar- 
rhenius law, representing the temperature dependence 
of D 

D = Doexp -- ~ (4) 

where Q is the activation energy, Do is the pre-ex- 
ponential factor, T is the temperature and k is the 
Boltzman constant. It may be assumed that for dilute 
alloys this temperature dependence is just the same, 
but includes the concentration dependence both in 
activation energy and pre-exponential factor. If only 
the concentration dependence of Q is taken into con- 
sideration it is possible to use Equation 1 thus justi- 
fying also Equation 3. Nevertheless the possible de- 
pendence of Do on concentration means that several 
additional dependences have to be taken into account. 
They are: (a) the concentration dependence of the 
lattice parameter in an alloy and (b) the changes of the 
effective frequency of vibrations when the concentra- 
tion of the solute is varied. Then it is easy to under- 
stand that the coefficients B1,B2, ... from Equation 
2 have to include this additional information and it is 
impossible to use a simple Equation 3, as in [3]. 
Indirectly the importance of taking into consideration 
these circumstances follows also from the results of 
fitting of Q and the pre-exponential factor to experi- 
mental data, provided in [-6, 7]. 

In Tables I and II the results of our fitting of 
Equation 1 and Equation 2 to experimental data for 
different alloys are represented. It is seen that the 
constants B~ and Be from Equation 2 for these alloys 
do not satisfy Equation 3 and B from Equation 1 is 
not equal to B~ from Equation 2. This is an expected 
result in consequence with the predictions of Le Claire 
[-8]. 

T A B L E I Enhancement factor B for some b.c.c, systems (results of 
fitting of Equation 1) 

System Temperature, ~ B 

V - Z r  1628 12.42 
1788 14.28 

V - C o  1438 23.85 
1521 46.70 

Zr -V  1245 - 16.88 
1435 - 30.27 

~Zr Fe 1173 - 17.18 

The experimental data for fitting were taken from [-6] V-Zr,  [-7] 
Zr-V, [-14] V-Co,  [,15] [3Zr-Fe. 

T A B L E  II Enhancement factors B1 and B2 for some b.c.c, sys- 
tems (approximation of Equation 2) 

System Temperature, ~ Bt B2 

V - Z r  1788 14.8 163.1 
V-Co  1438 14.55 886.67 
Z r - V  1435 - 25.52 92.62 
[3Zr-Fe 1173 - 34.62 707.87 

The experimental data for fitting were taken from 1-6] V-Zr,  1-7] 
Zr-V, [14] V-Co,  [,15] 13Zr Fe. 
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T A B L E  II I  Enhancement factor B for some b.c.c, systems (linear 
approximation of Equation 2) 

System Temperature, ~ B 

V-Zr  1628 13.85 
1788 18.76 

V - C o  1438 28.91 
1521 46.70 

Zr -V  1245 - 14.76 
1435 - 23.97 

~Zr-Fe  1173 - 12.74 

The experimental data for fitting were taken from [6] V-Zr,  [7] 
Zr-V,  [14] V-Co,  [-15] ~Zr-Fe. 

If one is restricted only by the linear concentration 
term from Equation 2 then the coefficient B, as seen 
from Table III, is also not equal to B from Equation 1. 
In this table we show the results of our fitting of 
D2(c) = D2(0)(1 + Bc) to the same experimental 
data as in Tables I and II. On the other hand the use of 
Equation 2 as a start point for the description of the 
diffusion behaviour gives a possibility of constructing 
the statistical theory of diffusion. Such a theory was 
worked out previously in [9, 10], where only the linear 
term in the concentration for diffusion coefficient was 
assumed. This was done for the solvent diffusion in 
dilute b.c.c, solid solutions. Nevertheless as shown in 
Table II the convergence of the expansion series that 
take only the linear term in concentration into consid- 
eration is not obvious. Assuming that the range of the 
dilute solution is limited by approximately 2 at% in 
solute concentration it is easy to estimate that for 
some alloys the ratio B1 c/Bzc 2 is not small enough to 
neglect the second (and sometimes higher) terms in the 
eXpansion series. The results of Table II allow the 
provision of the analyses of convergency and the es- 
timation of the value of concentration when these 
series are converged. So, for example, for V-Zr alloy 
this limiting value of concentration, when only t h e  
terms up to C 2 w e r e  taken, is ,-~ 1 at% and for V-Co 
it is equal to 0.2 at %. Thus the possibility of restricting 
by the terms of order c 2 for higher concentrations 
have to be checked in each case especially. Up to these 
values of concentrations one can use the linear fitting 
and evaluate the single parameter B. For this case the 
microscopic statistical theory that describes the 
changes in the jump frequencies and the changes in 
the interaction energies was carried out in [-5, 9, 10]. 

The aim of this paper is twofold. On the one hand 
we are showing how to take into account the concen- 
tration dependencies of the activation energy, lattice 
parameter and effective frequencies of vibrations of 
atoms. The solving of this problem gives a way for 
arriving at simple relations between the values of 
parameters B1, B 2 and the changes of thermodynamic 
characteristics of the dilute solid solution. Thus, 
measuring the concentration dependencies of these 
values one can predict also the D2(c)  dependence. On 
the other hand the statistical theory gives the neces- 
sary understanding of the diffusion process, evaluates 
the ratios of the jump frequencies and allows the 
estimation of the conditions for the formation of clus- 
ters of solute atoms. 



2. Thermodynamic approach to the 
evaluation of enhancement parameters 

Let us assume following, for example [6, 7, 12], that 
the temperature dependence of diffusion coefficient of 
solute diffusion in dilute solid solution may be repre- 
sented in the Arrhenius form 

D2 = D2oexp -- ~ (5) 

It is natural to assume the concentration dependence 
D2o = D2o(C ) and Q = Q(c). Because of the small 
concentration of the solute we can produce the 
Taylor's series 

D2o(C) = D2o(O) 

~D2~ c=O 1 ~2D2o(C ) c=O 
-~ ~c c + 2 ~C 2 

C 2 + .,. 

(6) 

Q(c) = Q(O) 

~Q(c) ~=o 1~2Q(c) ~=~ 2 + ... (7) 
+ ~ 2 - c  c + ~  ec ~ 

where D2o(0 ) and Q(0) are the pre-exponential factor 
and the activation energy for the diffusion of the solute 
into the pure solvent. Restricting ourselves to the 
terms of the second order in concentration and substi- 
tuting Equations 6 and 7 into Equation 5 we get 

1 ~D2o(C ) 
D2(c) = D2(0) 1 + 020(0)  ~C c=o 

1 1 ~2D2o(C) "~ 
C + ~ D2o(0~ ~C2 c=0 C2 J 

OQ(c) c=o c ) x exp Oc k-T 

x e x p (  1 ~2Q(c) ~T)  
2 ~c 2 c=o 

(8) 

The last two exponents may be also expanded into 
concentration series up to the same order in concen- 
tration. The result of this procedure can be given in 
a form 

D2(c) = D2o(O)exp ( Q(O)'~j 

1 22'~ 1 (1 + a t e + ~ c  2) 1 - y c + ~ y  c - ) (  - 6 c  2) 

(9) 
where 

at = 1 ~D2o(C) c=O 
D2o(0 ) ~C 

1 1 ~2 D2~162 c=O 
[~ = 2 D2o(0 ) ~r 

1 eQ(c)c=o" 
Y - k T  ~c ' 

1 1 ~ 2 Q ( c ) c = O  (10) 
8 - 2 k T  ~c 2 

Combining the terms that are linear and square in 
concentration and comparing the result with Equa- 
tion 2 one gets immediately 

B1 = at - -  Y (11) 

1 y 2  - -  ~,y __ ~ _[_ [~ (12) B2 = 

(The terms of the order c 3 and higher were neglected.) 
Now it is easy to understand that some physical 

conditions have to be satisfied if one wishes to use 
Equations 1-3. If D2o(c) is a constant value 
(D2o(C) = D2o(0) and the activation energy is a linear 
function of concentration, Equation 3 follows from 
Equations 11 and 12. In this case it is possible to get 
a positive or negative value for B1, but B2 is always 
positive. When the above mentioned conditions are 
not satisfied, B2 may be negative also. These condi- 
tions obviously restrict the range of application of 
Equation 3, so, Equation 1 is useful when no changes 
of pre-exponential factor in diffusion coefficient with 
concentration are observed and Q(c) = Q(O) + cQ (1), 
where Q~ a constant. When D2o(C) and Q(c) are 
both linear functions in concentration then 

1 B2 1 ~ 2  (13) 

1 
and Equation 2 with B2 ~ ~ B 2 seems to be more 

adequate to describe the diffusion. When D2o(C) and 
Q(c) are nonlinear functions, the more general Equa- 
tion 12 has to be used. 

On the other hand, it is clear that the results of 
fitting of D2(c) by means of Equation 2 give the neces- 
sary information about the behaviour of concentra- 
tion dependencies D2o(C) and Q(c). Actually, if 

1 2 
B2 = ~ B~ then D2o is a constant and Q(c) is a linear 

function. In this case Equation 1 describes D2(c) with 
the same accuracy as Equation 2. All these results do 
not depend on the type of the lattice and are applic- 
able both to the b.c.c, and f.c.c, systems and for solute 
as well as for solvent diffusion in the dilute solid 
solution. 

3. Microscopic definition of enhancement 
parameters 

We shall produce the evaluation of enhancement of 
solute diffusion following the method suggested by 
Le Claire [9] for calculations of enhancement factor 
for solvent diffusion in the dilute substitutional alloys. 
Nevertheless some initial points have to be noted. The 
first point of the calculations is the choice of the 
relevant group of atoms in the lattice, where the 
changes in the diffusion process in dilute solution in 
comparison with pure solvent have to be taken into 
consideration. We shall assume that: (1) this group is 
defined by the number of lattice sites from which the 
tracer atom or the vacancy may jump to the first or 
second coordination shell of the reference solute (RS) 
atom; (2) the solute atoms are forming the absolutely 
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disordered homogeneous solid solution; (3) the solute 
atoms in the solution are noninteracting, because they 
are far enough from each other, and each solute tracer 
atom may be influenced only by one solute atom; (4) 
the changes in the energies of formation of vacancies 
are considered only for vacancies forming on the first 
or second coordination shell of the solute atom. 

These assumptions restrict the choice of group of 
atoms by the fifth coordination shell of the solute 
atom in the b.c.c, lattice. This atom is situated in the 
"0" position (Fig. 1). So in the b.c.c, lattice our group 
includes 59 lattice sites, that are the zero position and 
the common number of sites in the five nearest coordi- 
nation shells of this position. This corresponds to the 
concentration of solutes that is approximately 
1.7 at%. When the concentration of solutes in an alloy 
is higher, one has to take into account the fact that the 
atoms of the fifth coordination shell are influenced by 
two solute atoms. This will change the group of atoms 
that have to be taken for modelling the jumps in 
diffusion. We shall define here the diffusion coefficient 
in the following form: 

1 2 
D2 = ~ r 2 a  f=, (14) 

where F2 is the average number of jumps of the diffu- 
sing solute atoms, f2 is the correlation factor for solute 
diffusion, which is assumed to be concentration inde- 
pendent [8], a is the lattice parameter that is also 
assumed to be constant. 

In a pure solvent F2 is defined by the concentration 
of vacancies, and takes into consideration the changes 
in the bonding energies. Following Le Claire [9] 

F 2 = 8(92 exp ( g "k- Agl / (15) 

where (92 is the jum~ frequency for solute (impurity)- 
vacancy jumps (see Fig. 1) in pure solvent; g is the free 
energy of vacancy formation in a pure solvent; Agl is 
the additional free energy to form a vacancy on a first 
nearest-neighbour site. Thus the diffusion coefficient is 

D 2 =  f2 a2(92 exp ( g +  kT  Agt )  (16) 

the numbers in parentheses indicate the number of possible jumps 
with their respective frequencies 

Figure 1 Schematic illustration of the cluster in b.c.c, structure. C), 
vacancy; @, solute atom; O, solvent atom. The numbers in paren- 
theses indicate the number of possible jumps with their respective 
frequencies. 
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In dilute solid solution the jump frequency of a tracer 
near the RS will differ from r Moreover the presence 
of some concentration of solutes in the solution 
changes the vacancy concentration. These two effects 
determine the enhancement (dehancement) of the sol- 
ute diffusion. 

In b.c.c, structure where the difference in the first 
and second nearest neighbours' distances is small (less 
than 15%) one has to consider the bonding solute 
- solute and solute - vacancy on both shells. (In the 
case of f.c.c, structure it seems to be possible to neglect 
the influence of the RS on the atoms that are on the 
second shell.) All the jump frequencies of a tracer, that 
are not bringing it to the first or second neighbour 
position of the solute in the solution are assumed to be 
equal to c02. 

Let us define the binding energies ( - Agi; i = 1, 2) 
between solute and vacancy on the i-th coordination 
shell. The binding energies solute-solute will be 
( - Agpi; i = 1, 2) respectively. 

The conditions on the jump frequencies that follow 
from the principle of detailed balancing (as shown for 
f.c.c, structure in [9]) are 

/Agl  ~ /Agp2 ~ _~_ o, exp  jexp  j   lexp( )exp( ) 
(a) 

(Ag l~  /Agpl ~ 
m23 exp \ kT J = w24 exp ~ - ~ -  ) (b) 

(9h3exp \kT J = (924exp (c) (17) 

In these relations coij are jump frequencies, and are shown 
in Fig. 1. The jump frequencies (912 and c021 change the 
binding energy of solute-solute and solute-vacancy pairs. 
These changes are connected with the fact that the solute 
from the nearest position jumps to the second nearest 
neighbour position ((912), while c02~ is connected with the 
reverse jump; c023 and (9h3 are dissociative and break the 
solute-solute pairs; c024 and (9~4 are associative and cre- 
ate the solute-solute pairs. The statistical analyses given 
in the Appendix allows us to obtain the values B~ and B2 
from Equation 2 as functions of these jump frequencies. 
These functions are given by Equations A.17 and A.18. 

We would like to emphasize here that Equation A.18 is 
not the same that the evaluation of B2 from Equation 2. 
Actually, the coefficients in Equation 2, starting from B2, 
are taking into consideration all possible solute clusters in 
the dilute solution, while expression A.18 shows the con- 
tribution of single solutes only. Nevertheless, if by using 
Equation A.17 one estimates the ratio of frequencies and 
substitutes them into Equation A.18 it is possible to 
compare the obtained value of coefficient B2, with the 
results of the fitting of Equation 2 to experimental data. If 
the difference between the values of the coefficient ob- 
tained by these two methods is small enough (not more 
than the error of experimental data), then the above 
technique describes the diffusion process in a proper way. 
If this does not happen, the solute atom clusters are 
contributing to the diffusion process. 



4, Discussion 
Making use of the approach derived in Section 2 and 
on the basis of fitting of  Equation 6 to the experi- 
mental data it is possible to evaluate the concentration 
dependence of the vibrational frequency v(c). Assum- 
ing, as in Section 3, that the correlation factor is 
a constant and independent of concentration 

D2o(C) = aZ(c)v(c)f2 (18) 

For  a dilute solid solution the concentration depend- 
ence of the lattice parameter is well represented by 
Vegard's law. Using, as in Section 2, the Taylor's series 
for a(c) and v(c) and restricting by the linear in concen- 
tration terms in a(c) and by square in c terms in v(c) 
the following expressions for the derivatives from 
Equation 6 may be obtained 

OD2o(C) / 5v(c) 
~=o = f~ [a~ 5c ~ ~=o + 2v(0)aA~cc) c=o) 

(19) 

1 52D2o(C) c=o 
2 5c 2 

( ~ e2v(c) ~=o 
= f2  OC 2 

5a(c) ~= o ~v(c) 
+ 2 a A ~  ~ c=0 

(~a(c) 
+ v(O), ~c ~=o) ~) 

(20) 

Noting that a(c) = CaB + (1 - C)aA, the value 

5a(c) c=o ~c = a~ - aA, where A and B are solvent and 

solute atoms respectively. Now the values 

c = Or(c) 5v(C)5c o and 5c 2 ~=o may be obtained. As an 

example we carried out the fitting of  D2o(C) (Equation 
6) to the experimental data for V-Zr  alloy [6] with 
a small concentration of Zr (from 0 to 2 at%). For  this 

 v(c) 
alloy v(0) = 1.29 x 1017 sec -1, 5c "c=o = 1.01 x 

wO2v(c) c=o 1019 sec -1 and ~ - e 2  = 2•  1020 sec- 1. These re - 

suits may be used for estimation of the convergency of 
Taylor's series for concentration dependence of fre- 
quency of vibrations. It is easy to see that these series 
are converged only for very small concentrations, and 
the contribution of the linear term is of the same order, 
that is the frequency v(0) for the concentration 

1 at%, while the square term is one order smaller 
for this concentration. So, in this case we can restrict 
ourselves to linear terms in concentration series for 
frequency v(c). That does not mean that the same 
conclusion may be reached for other dilute solutions. 
Obtained values may be useful for the estimation of 
the changes of the vacancy migration energy with 
concentration. For  this purpose we shall introduce 
several simplifying assumptions for the model de- 
scribed in Section 3. The value of B1 for the V-Zr  
alloy, for example, is positive (see Table II) and 

D(c) > D(0). This is true even if B 2 is negative, be- 
cause IBlcl > IBzc2l. Let us assume now that 

AO2 = Agpl = Agp2 = 0 (21) 

Then from Equation 17a-c 

[Agx'~ 
('012 e x p ~ - )  = (O21 (a) 

(o23 exP \ k r ] = (o24 (b) 

r t 
17"023 = 0)24 (c)(22) 

Let us calculate A91 for an alloy in the following way. 
The value Agl is the difference between the energy of 
vacancy formation for solvent self-diffusion and the 
energy of vacancy formation for the solute diffusion in 
pure solvent. For  Zr diffusion in pure V Agl = 
0.205 eV. This result was obtained using 9 = 2.1 eV 
from [13] and the assumption that the energy of 
vacancy formation for Zr diffusion in pure V is equal 
to 0.6 Q(0). Taking into account Equation 21 it is 
possible to obtain 0)23 = 0)12 from Equation 22a, b. 
This follows immediately from the conclusion that 
these frequencies are influenced only by the vacancy- 
solute binding and the probability of jumps to the 
second shell from the first one is just the same as to the 
third or to the fifth shell. We can-also obtain (o~3 = 
(o2 because it was already assumed that A92 = 0 and 
the atom on the second shell for this jump is indepen- 
dent of the reference solute. Then, using Equations 
20,21,A.11-A.15 one can rewrite Equation A.17 in 
this form 

0)23 0)23 
B1 = 7 + 7 - 14 (23) 

0)2 0)2 

Recalling now that 

co = vexp - (24) 

we can get the equation for concentration dependence 
of vacancy migration energy. 

(o2~ v(c) . /E~(o) E~(c)~ 
0)2 i v~eXpL_ k~T ) (25) 

where 

eEm(c) ~=o Era(c) = E,,(O) + ~ c. (26) 

Using the equation 

Or(c) 1 52v(c) c=0 c2 (27) v(c)=v(O)+ 5c c=oC+~ ~c ~ 

with the above obtained values of the first and second 
derivatives of v(c) on concentration for V-Zr  alloy 
with BI = 14.8 (Table II), c = 1 at%, T = 1788 K 

5Em(c) c=o the following parameters were calculated: ~ = 

-0 .9eV,  0)23/(o2 = 2.06. The migration energy 
E,,(0) ~ 0.4 Q(0) and is equal to 1.54 eV. Thus using 
Equation 26, E,,(0.01) = 1.53 eV. 
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5, Conclusions 
The obtained values for the concentration depend- 
encies of parameters of diffusion allow us to conclude 
that the increase (or decrease) of the diffusion coeffic- 
ient with the increase of the solute concentration in the 
dilute alloy is dependent on a lot of factors, especially 
on the concentration dependencies of the energies of 
formation and migration of vacancies as well as on the 
concentration dependencies of the lattice parameter 
and of the frequencies of vibrations. In each case an 
additional analysis is needed in the way proposed 
above as an example. Thus, in the case of V-Zr alloy it 
is shown that although the number of vacancies de- 
creases (E~(c) > E~(0)) the value D(c) > D(0). This 
occurs because the frequency of vibrations grows sig- 
nificantly with the concentration of the solute. Al- 
though in the V-Zr alloy Era(c) < Era(0) this differ- 
ence is small enough and does not influence the D(c) 
dependence. In any case, one has to check the E,,(c) 
dependence because sometimes this may be impor- 
tant, for example, in a case when these changes 
may compensate the concentration dependence of 
E~(c). 
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Appendix 
Let us calculate the total number of solute jumps 
made per unit time, adding the contribution from 
vacancies at each of five different types of site. Let Ni 
be the number of solute atoms and pl and P2 the 
fractions of these that have vacancies associated with 
them at first- and second-neighbour sites. Here we are 
assuming that the additional free energy to form a va- 
cancy near two solute atoms Again = Agl + Agm, 
where 1, m are the numbers of coordination shells. Ifp~ 
and P2 << 1 [5] then 

p~= 8exp( - g+ Ag~+k_T z~gl) (A1) 

p2 -= 6exp(  - g +  Ag~+k_T Ag2) (A2) 

The number of solute jumps per unit time effected by 
these associated vacancies is then 

Nipl(36o21exp(- - -  

NiP2(40J12exp(- - -  

Ak~-~2)-q-40)24 ) (A3) 

Ak--~) + 4co~4) (A4) 

Here we are taking into consideration that the jumps 
with the frequencies o.)12 and o21 are influenced by the 
RS atom at the start and at the final position. On the 
contrary, all other jumps are influenced by RS on one 
of the possible atom positions (starting one or final 
one). Let N~ be the total number of crystal sites, so that 

iV, 
c = ~ ,  z1 and z2 is the number ofiattice sites at the first 

and second shells. A number Ns - (zl + z2 + 1)Ni = 
N~(1 - 15c) of solvent sites are outside the second- 
neighbour shells of solute atoms and contain a total 
number, nv, of randomly distributed free vacancies. 
There are 12 third-nearest neighbours to each solute, 
so the number of vacancies on third coordination 

shells is c = ~ .  The number of solute jumps effected 

by these per unit time is 

n~12Ni 
NAI _ 15c) (26o23exp( k-q-~l) + 6o2) (A5) 

Similarly, the number of solute jumps effected by the 
vacancies of the fourth and fifth coordination shells 
may be obtained as 

n,,24Ni ( ,  ( Ak~2 ) ) 
Ns(1 - 15c) o23exp + 76o2 (A6) 

nv8N, (oza exp ( A k - ~ l ) +  76oz ) (A7) 
NAi  - ~5c) 

The remaining free vacancies beyond fifth neighbour 

n~ 44 Ni 
nv 

N~(1 - 15c) 

thus giving the total contribution of 

(n~ n~44Ni "] 
N~(1 - 15c)/8c% (AS) 

solute jumps. We now add the contribution of A3 to 
A8 and divide by the number of solvent atoms, 
N~(1 - c), to give the jump rate per solute atom 

V2(c)  = 

1288 

NA1 - c) 

r 8Niexp( - 

6Niexp ( - 

nvl2Ni / exp[L 
Ns(1 -- 15c)~ 26oz3 - - - -  

nv8Ni (6o23 exp(  _ - 
, N~(i ---- 15c) 

g + A g l  + 

k T  1 2 e x p  - --~ 4(024 -~- 

kr /I N~(1 - 15c)~ c%3 

Akg_T1) + 76o2) + (nv nv44Ni "x Us(1 -~ ]-5c))86o2 

Agp2) 76o2) + 
k T ]  + 

(A9) 



In the following step we used an equation similar to 
that of Lidiard [5], 

nv = exp Ns(1 - 14c) (A10) 

but took into account the energy of vacancy formation 
near the solute atom. Using the definitions 

qb : (30)21exp(-Ak-~-~) + 40)24)exp( - Agt']kT} 

(All) 

rl = (30)12exp(Ak~-TX) +30)~4)exp(-Ag2"]kT] 

(112) 

Z=0)23exp(Akfl-T1) +30)2 (A13) 

~ , = o ~ 3 e x p ( A f l - ~ 2 )  + 70)2 (A14) 

e = 0 2 3 e x p ( k ~ l . )  + 70)2 (A15) 

and producing the Taylor's series on concentration 
(neglecting all terms of power greater than 2) it is 
possible to rewrite Equation A9 in a compact form 

F 2 ( c )  = F 2 ( 1  q- B~c + B 2 c  2) (A16) 

1 
B1 = - - ( ~  + q + 3Z + 3~ + e ) -  57 (A17) 

(1)2 

4 

B2 = ----t (qb + q + 6Z + 6L + 2e) - 101 (A18) 
0) 2 
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